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ABSTRACT: Despite the importance of databases in 

virtually all data driven applications, database 

forensics is still not the thriving topic it ought to be. 

Many database management systems (DBMSs) 

structure the data in the form of trees, most notably B 

+-Trees. Since the tree structure is depending on the 

characteristics of the INSERT-order, it can be used in 

order to generate information on later manipulations, 

as was shown in a previously published approach. In 

this work we analyse this approach and investigate, 

whether it is possible to generalize it to detect 

DELETE-operations within general INSERT-only 

trees. We subsequently prove that almost all forms of 

B +-Trees can be constructed solely by using 

INSERToperations, i.e. that this approach cannot be 

used to prove the existence of DELETE-operations in 

the past. 

 

I. INTRODUCTION 
Digital forensics has become an important 

factor in the analysis of incidents in the IT world, be 

it during an official legal investigation, or solely 

within an internal analysis. While there are many 

novel approaches in well-researched areas like 

network or file forensics, the topic of database 

forensics, i.e. the analysis of databases in order to 

detect manipulations and hidden information, has 

never been in the center of attention, even though it 

gradually gains importance in the scientific 

community . Especially considering the proclaimed 

”age of data science” this seems like a huge blind 

spot, as most structured data is stored, and often even 

processed, in some kind of database. Nevertheless, 

several approaches for database forensics have been 

devised in the past. Many of these focus on the 

extraction of information gathered in log-files or 

related mechanisms, also including NO-SQL 

databases .  

Other approaches rely on the analysis of 

internal mechanisms used for guaranteeing ACID-

compliance like the transaction mechanism . 

Especially for the first strategy, there exists a large 

body of knowledge targeting many different database 

management systems like Oracle or MS SQL . One 

major drawback of most of theses approaches, when 

compared to those targeting internal mechanisms, is 

that logs are written for the purpose of detecting 

malicious behavior , thus being a primary target for 

manipulations themselves. Furthermore, users with 

administrator privileges do have a lot of possibilities 

regarding log files. This is not so easy with the 

utilization of internal mechanisms, as manipulations 

there can possibly destroy the integrity of the 

database. Another approach that even works a level 

of abstraction deeper than the utilization of DBMS-

specific internal mechanisms was provided . In this 

approach, the authors use the structure of the 

resulting B +-Tree that is used to structure the data 

inside the DBMS in order to detect certain kinds of 

information. Still, besides the issue of practicability 

(see for a practical adoption in logging), the approach 

also requires a certain insertion order of the elements, 

they have to be entered in a strictly monotonous order 

with respect to the primary key. In this work we will 

thus discuss why relaxing this requirement is not 

easily done and we prove that almost all tree 

structures as utilized by the original mechanisms can 

be constructed by solely using INSERT-statements, 

thus making the detection of DELETEs impossible 

using this approach  

 

II. BACKGROUND & RELATED WORK 
B-Trees and B + -Trees The B-Tree was 

originally defined by Bayer [4] as a tree structure 

where all leaf nodes lie on the same level (balanced 

tree) and the following properties are obeyed: 

Every node except the root has between b 2 

and b, the root node between 1 and b elements. The 

value b is constant and predefined for a given tree 

(”order” of the tree).  

 An inner node with d elements possesses d 

+ 1 child nodes 

 The elements inside nodes are sorted. The 

difference between the classical B-Tree and the B +-

Tree is that all the payload in a B +-Tree resides in 

the leaf nodes, the inner nodes solely hold pointers in 

order to allow for searching the tree [5]. Insertion in a 

B +-Tree works as follows:  
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 The leaf node where the elements should be 

placed is identified. If this node contains less 

thanb elements than the new element is simply 

added to the internal sorted list of the node. If the 

leaf already contains b elements,its parent node, 

for which the lowest element in the second     

leaf  is selected. This is done iteratively, i.e. in 

case the parent node now contains more than b 

elements, it needs to be split too. This can be 

required to be done until the root node is 

reached, In case this contains b + 1 elements 

after the insertion, it is split too and a new root 

node is generated, solely holding the lowest 

element of the second child node as element. B 

+-Trees are typically used, with slight adaptions, 

in database storage engines like InnoDB. For 

example, since full SELECTs are quite common, 

the leaf nodes are linked with each other in the 

form of a list, still, the principles of the tree 

operations stay the same. 

Tree data structure works great in 

representing computations unambiguously. In this 

study, the researchers enhanced the existing insert 

algorithm in B*Tree by introducing an expanded 

algorithm for inserting key values in B*Tree. This 

would further delay, if not reduce redistribution and 

frequency of splitting nodes in B*Tree. The idea of 

the expanded algorithm is to check for a cousin node 

within the same level that can accommodate a key 

value from its nearest sibling. A cascading effect is 

expected until the nearest sibling of the overflowing 

node can accommodate a key value with the premise 

that the nearest siblings of the overflowing node are 

full. Exploring the potential of this algorithm can 

really simplify a complex problem. The expanded 

insert algorithm would ensure that all leaf nodes in 

the B*Tree would be full and not just 2/3 full before a 

redistribution process is to be performed. Thus, 

reducing the nodes used in a B*Tree that would result 

to a far more favorable priori and posteriori estimates. 

Many scenarios impose a heavy update load on B-tree 

indexes in modern databases. A typical case is when 

B-trees are used for indexing all the keywords of a 

text field. For example upon the insertion of a new 

text record (e.g. a new document arrives), a barrage 

of new keywords has to be inserted into the index 

causing many random disk I/Os and interrupting the 

normal operation of the database. The common 

approach has been to collect the updates in a separate 

structure and then perform a batch update of the 

index. This update "freezes" the database. Many 

applications, however, require the immediate 

availability of the new updates without any 

interruption of the normal database operation. In this 

paper we present a novel online B-tree update method 

based on a new buffering data structure we introduce 

- Dynamic Bucket Tree (DBT). The DBT-buffer 

serves as a differential index for new updates. The 

grouping of keys in DBT-buffer is based on the 

longest common prefixes (LCP) of their binary 

representations. The LCP is used as a measure of the 

locality of keys to be transferred to the main B-tree. 

Our online update system does not slow down 

concurrent user transactions or lead to degradation of 

search performance. Experiments confirm that our 

DBT buffer can be efficiently used for online updates 

of text fields. As such it represents an effective 

solution to the notorious problem of handling updates 

to an Inverted Index. 

B-tree indexes have been used in a wide 

variety of computing systems from handheld devices 

to mainframes and server farms. Over the years, 

many techniques have been added to the basic design 

in order to improve efficiency or to add functionality. 

Examples include separation of updates to structure 

or contents, utility operations such as non-logged yet 

transactional index creation, and robust query 

processing such as graceful degradation during index-

to-index navigation. Modern B-Tree Techniques 

reviews the basics of B-trees and of B-tree indexes in 

databases, transactional techniques and query 

processing techniques related to B-trees, B-tree 

utilities essential for database operations, and many 

optimizations and improvements. It is intended both 

as a tutorial and as a reference, enabling researchers 

to compare index innovations with advanced B-tree 

techniques and enabling professionals to select 

features, functions, and tradeoffs most appropriate for 

their data management challenges. 

The simplest solution is to store data in an 

array and append values when new values come. But 

if you need to check if a given value exists in the 

array, then you need to search through all of the array 

elements one by one and check whether the given 

value exists. If you are lucky enough, you can find 

the given value in the first element. In the worst case, 

the value can be the last element in the array. We can 

denote this worst case as O(n) in asymptotic notation. 

This means if your array size is “n,” at most, you 

need to do “n” number of searches to find a given 

value in an array. 

The easiest solution is to sort the array and 

use binary search to find the value. Whenever you 

insert a value into the array, it should maintain order. 

Searching start by selecting a value from the middle 

of the array. Then compare the selected value with 

the search value. If the selected value is greater than 

search value, ignore the left side of the array and 

search the value on the right side and vice versa. 

The database creates a unique random index 

(or primary key) for each of the given records and 

converts the relevant rows into a byte stream. Then, it 
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stores each of the keys and record byte streams on a 

B+tree. Here, the random index used as the key for 

indexing. The key and record byte stream is 

altogether known as Payload. all records are stored in 

the leaf nodes of the B+tree and index used as the key 

to creating a B+tree. No records are stored on non-

leaf nodes. Each of the leaf nodes has reference to the 

next record in the tree. A database can perform a 

binary search by using the index or sequential search 

by searching through every element by only traveling 

through the leaf nodes.If no indexing is used, then 

the database reads each of these records to find the 

given record. When indexing is enabled, the database 

creates three B-trees for each of the columns in the 

table 

 

III. CONCLUSION 
Databases should have an efficient way to 

store, read, and modify data. B-tree provides an 

efficient way to insert and read data. In actual 

Database implementation, the database uses both B-

tree and B+tree together to store data. B-tree used for 

indexing and B+tree used to store the actual records. 

B+tree provides sequential search capabilities in 

addition to the binary search, which gives the 

database more control to search non-index values in a 

database. In this work we showed that approach for B 

+-Tree-forensics for databases as defined in [12] 

cannot be generalized for the detection of data 

deletion in case of a table that allows general, non-

monotonous, data insertion. Of course, the approach 

can still be used for the task it was originally 

intended, indicating manipulations in Audit & 

Control tables. It must be noted though that, similar 

to the original approach, we solely concentrated on 

the structure of the leaf nodes and did not consider 

the whole structure of the tree including internal 

nodes. Still, in essence the techniques work similar 

for changing the inner node structure, just the amount 

of elements required to be inserted later gets rather 

large. Furthermore, these proofs can be trivially 

expanded from B +-Trees to B ∗ -Trees, as the only 

difference between the two is the minimal number of 

elements inside the leaf nodes, the other requirements 

remain the same, which also means that the proofs 

given in this paper work similar. Still, since B ∗ -

Trees are, to the best of our knowledge, not that 

relevant in database forensics, and were also not part 

of the original approach, we skipped the details on 

them. 
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