

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 12, pp: 470-472 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0212470472 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 470

Database Forensics in Open Source Database

Assistant Professor, Ms. Nishi, Student, RaghavAbrol,

Student,VipulKukreja
[Dr. Akhilesh Das Gupta Institute of Technology and Management, Shastri Park, Delhi]

Date of Submission: 15-12-2020 Date of Acceptance: 30-12-2020

ABSTRACT: Despite the importance of databases in

virtually all data driven applications, database

forensics is still not the thriving topic it ought to be.

Many database management systems (DBMSs)

structure the data in the form of trees, most notably B

+-Trees. Since the tree structure is depending on the

characteristics of the INSERT-order, it can be used in

order to generate information on later manipulations,

as was shown in a previously published approach. In

this work we analyse this approach and investigate,

whether it is possible to generalize it to detect

DELETE-operations within general INSERT-only

trees. We subsequently prove that almost all forms of

B +-Trees can be constructed solely by using

INSERToperations, i.e. that this approach cannot be

used to prove the existence of DELETE-operations in

the past.

I. INTRODUCTION
Digital forensics has become an important

factor in the analysis of incidents in the IT world, be

it during an official legal investigation, or solely

within an internal analysis. While there are many

novel approaches in well-researched areas like

network or file forensics, the topic of database

forensics, i.e. the analysis of databases in order to

detect manipulations and hidden information, has

never been in the center of attention, even though it

gradually gains importance in the scientific

community . Especially considering the proclaimed

”age of data science” this seems like a huge blind

spot, as most structured data is stored, and often even

processed, in some kind of database. Nevertheless,

several approaches for database forensics have been

devised in the past. Many of these focus on the

extraction of information gathered in log-files or

related mechanisms, also including NO-SQL

databases .

Other approaches rely on the analysis of

internal mechanisms used for guaranteeing ACID-

compliance like the transaction mechanism .

Especially for the first strategy, there exists a large

body of knowledge targeting many different database

management systems like Oracle or MS SQL . One

major drawback of most of theses approaches, when

compared to those targeting internal mechanisms, is

that logs are written for the purpose of detecting

malicious behavior , thus being a primary target for

manipulations themselves. Furthermore, users with

administrator privileges do have a lot of possibilities

regarding log files. This is not so easy with the

utilization of internal mechanisms, as manipulations

there can possibly destroy the integrity of the

database. Another approach that even works a level

of abstraction deeper than the utilization of DBMS-

specific internal mechanisms was provided . In this

approach, the authors use the structure of the

resulting B +-Tree that is used to structure the data

inside the DBMS in order to detect certain kinds of

information. Still, besides the issue of practicability

(see for a practical adoption in logging), the approach

also requires a certain insertion order of the elements,

they have to be entered in a strictly monotonous order

with respect to the primary key. In this work we will

thus discuss why relaxing this requirement is not

easily done and we prove that almost all tree

structures as utilized by the original mechanisms can

be constructed by solely using INSERT-statements,

thus making the detection of DELETEs impossible

using this approach

II. BACKGROUND & RELATED WORK
B-Trees and B + -Trees The B-Tree was

originally defined by Bayer [4] as a tree structure

where all leaf nodes lie on the same level (balanced

tree) and the following properties are obeyed:

Every node except the root has between b 2

and b, the root node between 1 and b elements. The

value b is constant and predefined for a given tree

(”order” of the tree).

 An inner node with d elements possesses d

+ 1 child nodes

 The elements inside nodes are sorted. The

difference between the classical B-Tree and the B +-

Tree is that all the payload in a B +-Tree resides in

the leaf nodes, the inner nodes solely hold pointers in

order to allow for searching the tree [5]. Insertion in a

B +-Tree works as follows:

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 12, pp: 470-472 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0212470472 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 471

 The leaf node where the elements should be

placed is identified. If this node contains less

thanb elements than the new element is simply

added to the internal sorted list of the node. If the

leaf already contains b elements,its parent node,

for which the lowest element in the second

leaf is selected. This is done iteratively, i.e. in

case the parent node now contains more than b

elements, it needs to be split too. This can be

required to be done until the root node is

reached, In case this contains b + 1 elements

after the insertion, it is split too and a new root

node is generated, solely holding the lowest

element of the second child node as element. B

+-Trees are typically used, with slight adaptions,

in database storage engines like InnoDB. For

example, since full SELECTs are quite common,

the leaf nodes are linked with each other in the

form of a list, still, the principles of the tree

operations stay the same.

Tree data structure works great in

representing computations unambiguously. In this

study, the researchers enhanced the existing insert

algorithm in B*Tree by introducing an expanded

algorithm for inserting key values in B*Tree. This

would further delay, if not reduce redistribution and

frequency of splitting nodes in B*Tree. The idea of

the expanded algorithm is to check for a cousin node

within the same level that can accommodate a key

value from its nearest sibling. A cascading effect is

expected until the nearest sibling of the overflowing

node can accommodate a key value with the premise

that the nearest siblings of the overflowing node are

full. Exploring the potential of this algorithm can

really simplify a complex problem. The expanded

insert algorithm would ensure that all leaf nodes in

the B*Tree would be full and not just 2/3 full before a

redistribution process is to be performed. Thus,

reducing the nodes used in a B*Tree that would result

to a far more favorable priori and posteriori estimates.

Many scenarios impose a heavy update load on B-tree

indexes in modern databases. A typical case is when

B-trees are used for indexing all the keywords of a

text field. For example upon the insertion of a new

text record (e.g. a new document arrives), a barrage

of new keywords has to be inserted into the index

causing many random disk I/Os and interrupting the

normal operation of the database. The common

approach has been to collect the updates in a separate

structure and then perform a batch update of the

index. This update "freezes" the database. Many

applications, however, require the immediate

availability of the new updates without any

interruption of the normal database operation. In this

paper we present a novel online B-tree update method

based on a new buffering data structure we introduce

- Dynamic Bucket Tree (DBT). The DBT-buffer

serves as a differential index for new updates. The

grouping of keys in DBT-buffer is based on the

longest common prefixes (LCP) of their binary

representations. The LCP is used as a measure of the

locality of keys to be transferred to the main B-tree.

Our online update system does not slow down

concurrent user transactions or lead to degradation of

search performance. Experiments confirm that our

DBT buffer can be efficiently used for online updates

of text fields. As such it represents an effective

solution to the notorious problem of handling updates

to an Inverted Index.

B-tree indexes have been used in a wide

variety of computing systems from handheld devices

to mainframes and server farms. Over the years,

many techniques have been added to the basic design

in order to improve efficiency or to add functionality.

Examples include separation of updates to structure

or contents, utility operations such as non-logged yet

transactional index creation, and robust query

processing such as graceful degradation during index-

to-index navigation. Modern B-Tree Techniques

reviews the basics of B-trees and of B-tree indexes in

databases, transactional techniques and query

processing techniques related to B-trees, B-tree

utilities essential for database operations, and many

optimizations and improvements. It is intended both

as a tutorial and as a reference, enabling researchers

to compare index innovations with advanced B-tree

techniques and enabling professionals to select

features, functions, and tradeoffs most appropriate for

their data management challenges.

The simplest solution is to store data in an

array and append values when new values come. But

if you need to check if a given value exists in the

array, then you need to search through all of the array

elements one by one and check whether the given

value exists. If you are lucky enough, you can find

the given value in the first element. In the worst case,

the value can be the last element in the array. We can

denote this worst case as O(n) in asymptotic notation.

This means if your array size is “n,” at most, you

need to do “n” number of searches to find a given

value in an array.

The easiest solution is to sort the array and

use binary search to find the value. Whenever you

insert a value into the array, it should maintain order.

Searching start by selecting a value from the middle

of the array. Then compare the selected value with

the search value. If the selected value is greater than

search value, ignore the left side of the array and

search the value on the right side and vice versa.

The database creates a unique random index

(or primary key) for each of the given records and

converts the relevant rows into a byte stream. Then, it

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 12, pp: 470-472 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0212470472 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 472

stores each of the keys and record byte streams on a

B+tree. Here, the random index used as the key for

indexing. The key and record byte stream is

altogether known as Payload. all records are stored in

the leaf nodes of the B+tree and index used as the key

to creating a B+tree. No records are stored on non-

leaf nodes. Each of the leaf nodes has reference to the

next record in the tree. A database can perform a

binary search by using the index or sequential search

by searching through every element by only traveling

through the leaf nodes.If no indexing is used, then

the database reads each of these records to find the

given record. When indexing is enabled, the database

creates three B-trees for each of the columns in the

table

III. CONCLUSION
Databases should have an efficient way to

store, read, and modify data. B-tree provides an

efficient way to insert and read data. In actual

Database implementation, the database uses both B-

tree and B+tree together to store data. B-tree used for

indexing and B+tree used to store the actual records.

B+tree provides sequential search capabilities in

addition to the binary search, which gives the

database more control to search non-index values in a

database. In this work we showed that approach for B

+-Tree-forensics for databases as defined in [12]

cannot be generalized for the detection of data

deletion in case of a table that allows general, non-

monotonous, data insertion. Of course, the approach

can still be used for the task it was originally

intended, indicating manipulations in Audit &

Control tables. It must be noted though that, similar

to the original approach, we solely concentrated on

the structure of the leaf nodes and did not consider

the whole structure of the tree including internal

nodes. Still, in essence the techniques work similar

for changing the inner node structure, just the amount

of elements required to be inserted later gets rather

large. Furthermore, these proofs can be trivially

expanded from B +-Trees to B ∗ -Trees, as the only

difference between the two is the minimal number of

elements inside the leaf nodes, the other requirements

remain the same, which also means that the proofs

given in this paper work similar. Still, since B ∗ -

Trees are, to the best of our knowledge, not that

relevant in database forensics, and were also not part

of the original approach, we skipped the details on

them.

ACKNOWLEDGMENT
The writers are very grateful to Dr. Akhilesh

Das Gupta Institute of Technology and Management,

Delhi, India, for providing eminent computation

amenities in the College campus. Authors would also

like to pay regards to the Director of College,

Department HOD and colleagues for giving their

ethical guide and assist in this research work..

REFERENCES
[1]. WK Hauger and MS Olivier. 2018. NoSQL

databases: forensic attribution implications.

SAIEE Africa Research Journal 109, 2 (2018),

119–132

[2]. Werner K Hauger and Martin S Olivier. 2015.

The state of database forensic research. In

Information Security for South Africa (ISSA),

2015. IEEE, 1–8

[3]. Peter Kieseberg, Sebastian Schrittwieser,

Lorcan Morgan, Martin Mulazzani, Markus

Huber, and Edgar Weippl. 2013. Using the

structure of b+-trees for enhancing logging

mechanisms of databases. International Journal

of Web Information Systems 9, 1 (2013), 53–

68

[4]. .Peter Kieseberg, Sebastian Schrittwieser,

Martin Mulazzani, Markus Huber, and Edgar

Weippl. 2011. Trees cannot lie: Using data

structures for forensics purposes. In

Intelligence and Security Informatics

Conference (EISIC), 2011 European. IEEE,

282–285

[5]. . David Litchfield. 2007. Oracle forensics part

1: Dissecting the redo logs. NGSSoftware

Insight Security Research (NISR), Next

Generation Security Software Ltd, Sutton

(2007).

[6]. Gerome Miklau, Brian Neil Levine, and

Patrick Stahlberg. 2007. Securing history:

Privacy and accountability in database

systems.. In CIDR. Citeseer, 387–396.

[7]. TanushreeShelare and VarshaPowar. [n. d.]. A

Database Forensic Approach to Detect Tamper

Using B+-Trees. ([n. d.]).

[8]. Patrick Stahlberg, Gerome Miklau, and Brian

Neil Levine. 2007. Threats to privacy in the

forensic analysis of database systems. In

Proceedings of the 2007 ACM SIGMOD

international conference on Management of

data. ACM, 91–102.

[9]. Erin Toombs. 2015. Microsoft SQL server

forensic analysis. Ph.D. Dissertation. Utica

College.

